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ABSTRACT. This report discusses many of the aspects of air-to-ground
visual search for targets. Curves are presented that can be used for
estimating the probability that a ground target is within view and for
determining the angular rate of the target as measured with respect to
the air observer. Optical aspects (~louds, atmospheric attenuation,
reflectance factors) of visual detection are ciscussed briefly and
references from which data can be obtained are cited. A number of
laboratory experiments concerning visual detection are described, and
some of the results are given. Examples of simulation, operational,
and mathematical methods of obtaining estimates of search performance
are given and compared.
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INTRODUCTION

At present, one of the critical problems encountered in military op-
erations is that of identifying ground targets from aircraft. The prob-
lem is more severe if the aircraft is flying low and fast. Search may
be made either directly throvrgh the canopy or on a television or optical
screen whose sensor is mounted on the aircraft. In any case, the problem
is one of identifying targets moving with respect to the observer.

The purpose of this report is to discuss the geometric, kinematic,
physical, and human angineering aspects of air-to-ground search. The re-
sults of pertinent analytic and experimental investigations are presented
and briefly discussed. Although the value of these investigations is as-
sessed, no attempt has been made to perform a comprehensive evaluation of
each of them.

GEOMETRY OF AIR-TO-GROUND SEARCH

Two factors that affect the detection pr-bability of a ground target
from an aircraft are obstruction of the field of view by (1) the aircraft
and (2) by the terrain surrounding the target. Both factcrs are geometric
in nature and must be considered in determining the detection probability
for any given situation.

AIRCRAFT OBSTRUCTION OF VIEW

The great increase in jet aircraft performance in recent years has
been accompanied by a decrease in the ease of searching from such aircraft.
The faster the aircraft and the sleeker the aerodynamic design, the poorer
the view from the cockpit. This view limitation imposed by the aircraft
is a function of the aircraft construction and the flying conditions, since
angle of attack changes with aircraft loading, altitude, and velocity. The
maximum line of sight depression angle has been measured for several air-
craft in power approaches and is shown in Fig. 1. Data taken from Ref. 1
were used to plot the curves. If the aircraft is assumed to have a smaller
angle of attack during a search flight, the curves would be raised somewhat.
An example is shown by the A-U4B depression angle dead ahead. If the angle
of attack is close to zero, the dead-ahead point of the curve would be
raised 8° 42' to the point indicated by the dotted line in Fig. 1. Gener-
ally, the maximum dead-ahead depression angle for such aircraft varies
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between 10 and 20 degrees. This aircraft obstruction results in a large
area benea '. the aircraft, blind area (shown in Fig. 2), which the pilot
cannot see without maneuvering. For instance, in level flight a¢+ 1,000

feet altitude with a depression angle of lu4 degrees, nothing can be seen
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FIG. 1. Maximum Angle of Depression for Pilot
Looking Out of Aircraft During Power Approach.
Pitch angles during approach are nose up except
for the A-3A (a two-place aircraft), which is
nose down. The obstructive effects of some cock-
pit structures, gunsights, etc., although in some
cases appreciable, are not shown in the curves.
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FIG. 2. Forward Area, Blind Range, Caused by Aircraft
Obstruction.
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dead ahead on the ground unless it is more than 4,000 feet ground-range
ahead of the aircraft. Values of blind range can be tasen from Fig. 3

for various depression angles and altitudes. This large blind area is

one of the reasons pilots prefer to search through the side of the canopy,
banking the aircraft during search. "S" turns are used often by the Navy
(Ref. 2) and the Air Force when searching the ground for targets.
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FIG. 3. Blind Range for Various Altitudes and
Maximum Depression Angles.

TERRAIN OBSTRUCTION OF VIEW

The degree of obstruction by the terrain has been estimated from
contour maps by a graphical method (Ref. 3). The results can be pre-
sented in terms of percent of area within view (useful for estimates of
reconnaissance effectiveness), or probability that a spot on the terrain
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at various ranges is within view (useful for weapon-delivery analyses).
Figure 4, taken from Ref. 3, shows the average percentage of various types
of terrain within view from various altitudes. As the terrain becomes
rougher, less of it is within the view of the air observer. H>iwever, an
inversion of this trend occurs when going from rough to very rough terrair
It is hypothesized that the sides of the hills are less obscured when they
are very steep; the associated vertical development leads to greater visi-
bilfity. Figures 5, 6, and 7 show the probability that a spot on the ter-
rain is within view from aircraft at various altitudes, as a function of
ground-range. Since these results do not include the masking effects of
foliage. the results are expected to be overestimations of area within
view an¢ of probability of seeing a target. This was shown to be true

in some cases where the method of obstruction estimation was c¢>mpared to
the results of a field studyl. These curves can therefore be used to set
the upper limits to the measures of obstruction.
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FIG. 4. Percentage of Various Types of Terrain
Seen from Aircraft.

lU. €. Naval Ordnance Test Station. Terrain Effects Upon Air-to-
Ground Target Visibility, by Carol Gill. China Lake, Calif., NOTS, 15
May 1962. (IDP-1u487), UNCLASSIFIED.
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FIG. 5. Probability of
Fairly Smooth Terrain Be-
ing in View. Aircraft alti-
tude above terrain is shown
on curves, in feet.
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FIG. 6. Probability of Moder-
ately Rough Terrain Being in
View. Aircraft altitude above
terrain is shown on curves, in
feet.
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The curves presented in this section can be used to estimate the
probability of the target's being in view. Whether the target is de-
tected and identified once within view is another problem which will be
discussed in the section on Psychophysics of Air-to-Ground Search.

=

8

PROBABILITY OF TERRAIN BEING 1N VIEW

o [
GROUND RANGE, THOUSANDS OF FT

FIG. 7. Probability of Rough Terrain Being in
View. Aircraft altitude above terrain is shown
on curves, in feet.

KINEMATICS OF AIR-TO-GROUND SEARCH

The motion of the field being searched with respect to the observer
can affect, in one way or another, search performance. In some cases,
motion might increase performance by causing the observer to employ a
more systematic method of search than that used in a static field. How-
ever, search time limitation imposed by motion of the field tends to re-
duce performance, and under some conditions, motion per se of the field
being searched will reduce search effectiveness.
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ANGULAR RATE OF THE GROUND

An equation giving the angular rate of any ground object within view
can be derived from the geometry shown in Fig. 8. The aircraft is diving
in the plane ABCD with a dive angle § at a velocity V. The target, T, is
lying in a flat plane beneath the aircraft. Its coordinates, measured
with respect to the aircraft, are H, distance beneath the aircraft; R,
distance in front of the aircratt; and S, offset distance to the side
(perpendicular to ABCD). The angular velocity of the point T can be
measured with respect to the velocity vector V. The rate of change of a,
the angle between V and AT, is the angular velocity of point T. It is
seen that

AT = V2 + RZ ¢+ §2 (1)
- R
AL = R § (2)
and
ET =Vs2 + (H - R tan §)2 (3)
Then, by the law of cosines,
I (R + H tan 8) cos § (%)
H® ¢+ R? ¢+ §2
Differentiating Eq. 4 with respect to time, one obtains
24 R2452) (R , dH )
da _ _ (HZ + R4 ¢+ S )(dt t ¢ tan 8] cos § .
a (H2 + R2 ¢ 52)3/2 sin a
dH dR
. (R + H tan §) (HaT +Rﬁ)cosc
(H2 + R2 + 82)%/2 4in (5)
From Eq. 4 one finds that
- 2 2
sina:fksin& Hcos §) ¢+ S (6)
H2 ¢+ R2 ¢+ 52
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One also has the relation:

dH
tan 6 = -gg (7)
at
and gg
_ at
V= - ol (8)

By substituting Eq. 6, 7, and 8 into Eq. 5 and simplifying the result,
one obtains

da _ V@Q + (Hcos § - R sin 6)7
at - YY) ¥ 9

»

-
e ———

)

N
b
N

FIG. 8. Angular Velocity Geometry for Air-to-
Ground Search. AB, BF, and BD form an ortho-
gonal coordinate system.

Equation 9 can be used to compute the angular velocity of any point
on the ground beneath an aircraft diving or flying level with a velocity
V. Values of the angular rate encountered in level flight can be taken
from the nomograph shown in Fig. 9 for selected ranges of altitude and
velocity. Some angular-rate contours for level flight over flat terrain
are shown in Fig. 10, 11, and 12. The blind areas shown in the figures
are calculated from a maximum depression angle of 16 degrees dead ahead
and a maximum depression angle of 32 degrees at an angle 45 degrees back
from dead ahead. It can be seen that at the lower altitudes of 50 and 100
feet, fairly high angular rates are encountered beyond the blind range,
whereas from a 500-foot altitude the visible part of the terrain dead a-
head is moving more slowly with respect to the pilot.
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The peculiar shapes of the iso-angular rate curves shown in Fig. 10,
11, and 12 cannot be easily understood by inspection of Eq. 9. Simplify-
ing Eq. 9 to level flight (8§ = 0) and differentiating with respect to S,

one obtains

[(RZ2 - (H2 ¢+ S2)] v

5 S ds . (10)
(H2 + R?2 + S2)° (S2 ¢+ H2)

d da
—dt 1/2

It is seen that for all points where R2 > (H2 + 82). an increase in S
will cause an increase in the angular rate. When (H2 + S2) > R2, the
angular rate decreases with increasing S. It can be shown that the effect
upon the angular rate of a point on the ground produced by a change in
aircraft altitude is given by Eq. 10 when HdH is substituted for SdS. Fig-
ure 13 shows the boundary on the ground where this change in sign of
d(da/dt) is found. Data shown in this figure apply only to level flight,
although a similar boundary between increasing and decreasing da/dt can
be mapped for aircraft diving or climbing.

EQUIVALENT ANGULAR RATES

The angular rate of a point in the field encountered at some given
altitude, velocity, and dive angle can be duplicated by flight at some
other altitude, velocity, and dive angle. Such duplication of the angular
rate of all the points in the field is not possible, however, Figure 14
shows the angular rate of ground points as seen from two different alti-
tudes and velocities, selected so that at 3,200-foot ground-range dead
ahead, the rates are equal. The peripheral field is moving faster at the
lower than at the higher aititude. In Fig. 15, rates encountered in level
flight are compared to those encountered in a dive. Again, velocity is
chosen so that the rates are equal 2,400 feet ahead of the aircraft. Even
the peripheral rates are about equal at this range, and at shorter ranges
the differences between rates are not large. At about 3,400 feet ahead of
the diving aircraft, the angular rate of the ground is zero; at points be-
yond that, the rate is negative. This is the main difference between
dives and level flight. In level flight, the rate has the same sign every-
where and is zero only at infinity. A more detailed analysis of the angu-
lar rates encountered in dives, with application to landing aircraft and
pilot judgments of motion, is given in Ref. 4.

Figures 14 and 15 illustrate the differences in angular rates and
hence, a possible source of error introduced in extrapolating search
data from one flight condition to another. Such an error would be due
to changes in the performance of human searchers that is induced by the
different motions in the field being searched.
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INSTRUCTIONS FOR USE OF NOMOGRAPH

Given:

Desired

EXAMPLE

Procedure:

(i)
(2)
(3)
(4)
(s)

(6)

(7)

(1) S offset distance to target
(2) H aircraft altitude

(3) R range ahead to target

(4) V velocity of aircraft

g%-. the angular rate of a point on the ground at (R, S)
S = 265 feet

H = 200 feet

R = 2,000 feet

V = 1,000 ft/sec

Find the desired S (265 ft) on the S-scale on the upper
left of the nomograph.

Then go across horizontally until the desired H-curve
(200 ft) is intersected.

Go straight down from this intersection to the index
line V-W.

Follow the curved lines down until the desired vertical
range line (2,000 ft) is intersected.

Draw a line from the index point on the lower right,
through the intersection point obtained in (4), up to
the index line X-Y.

Now draw a line from this intersection point on the index
line, through the desired velocity (1,000 ft/sec), across
tc the angular rate scale on the far left. The answer
(4.67 deg/sec) is obtained on this scale.

For convenience, two different scales, A and B, can be
used. In the example mentioned, the A velocity scale is
used, so the angular rate must be taken off the A da/dt
scale. If the B scale had been used (V = 200 ft/sec)
the corresponding angular rate would be 0.93 deg/sec,
taken off the B scale.

Scales are given below for conversion from ft/sec to knots and from
deg/sec to radians/sec.

° | 2 3 s s . 7 . ’ 10
k — = r— t T— — -4 +— Ay g OFS/8Ee
¢ T T

° 002 0.04 0.08 0.00 .10 o.i2 0.4 o.1e RAD/SEC
° | 2 3 2 s s ?

t L 1 L N L ? - i o 0 gr/sec

J
o 2 3 e M ¢ KNOTS

10
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Seen from Aircraft at 600-Foot Altitude.

TARGET ANGULAR RATE

Thus far, the discussion has treated the angular rate of part of the
visual field and is applicable to search considerations. Once a target
has been detected during this search, the next step may be to make a pass
over it and release or fire a veapon. It is therefore advisable to con-
sider the angular rate of a target as the aircraft flies over it. When
diving toward the target or flying at high altitudes, the target's angu-
lar velocity is low (at ur before weapon release) and has small effect
upon search effectiveness and tracking accuracy.

Since during level flight at low altitudes the velocity effect could
be a major one, curves are shown only for low altitudes and higher veloc-
ities. The target angular rates are shown in Fig. 16 through 1° as a
function of aircraft altitude, range to target, ard time to target. Thu

14
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release points of a weapon in a vacuum and of a high-drag bomd are also
shown on the curves and will be referred to later. It is interesting to
note for the cases shown that the angular rate of the target is fairly

low and does not change rapidly at ranges over 5,000 feet. At ranges
under 5,000 feet, when the aircraft is getting close to the target, the
angular rate begins to increase rapidly. There may therefore be greater
errors when tracking during low-level fast flights than during other weap-
on delivery modes. The angular rates described here, incidentally, are
the same as those encountered by the ground observer attempting to track
an aircraft.
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FIG. 16, Target Angular Rate With Air-
craft Velocity at 350 Knots in Level
Flight. Altitudes are shown on curves.
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MOVING TARGETS

It has been assumed in the preceding discussion that the target is
stationary with respect to the ground. Motion of the target can enhance
detection in three ways: (1) a new target is created by the motion, such
as the wake of a ship or a dust cloud behind a tank; (2) the change in
location of the target due to its motion is noted; and (3) in some cases,
the motion per se of the target attracts the observer's eyes. Although
the last two factors are difficult to assess, a consideration of theory
and experiment will illustrate their relevance.

Consider two objects moving parallel through the visual field with
angular velocities w, and w,. A differential threshold for angular ve-
locity may be defined as
(11)

Aw = w w

1“2
That is, the difference between the angular velocities of the two objects
must be at least Aw or an observer cannot with any confidence tell that
there is a difference.

Laboratory measurements of Aw have heen made with moving spots on an
oscilloscope, rotating disks, needle pointers, and other such devices. It
has been found that 4w is a function of the angular velocity of the refer-
ence object such that

.1

W= = constant (w ¥ O) (12)

within certain limits. W is known as the Weber ratio. From data summa-
rized in Ref. 5 (Fig. 20), it is seen that W = 0.14 for curve 1 and W = 0.08

for curve 2.

Consider the simple case of a moving target being viewed from an air-
craft flying level with constant velocity. If the target is moving along
the ground track of the aircraft, its angular velocity would be
(V - v)H

H2 + R2

as compared to the angular velocity of points on the ground about the tar-
get, which is given by

wy = - (13)

w S - —iv-——— (1“)

2 H2 + R2
where v is the velocity of the target and the other symbols have been de-
fined earlier. It can be shown that

= ¥
W 7 (15)
If a Weber ratio could be determined for the above situation and were
found to be 2.10, say, it could be concluded that targets moving less
than one-tenth the aircraft's velocity would not be spotted by virtue

of their motion per se.
17
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FIG. 20. Velocity Discrimination Thresholds.

OPERATIONAL EFFECTS

It should be pointed out that two additional factors must be consid-
ered in some cases when applying the angular rate information presented
here. The angular rates are measured with respect to the aircraft's
ground velocity vector, and in the presence of crosswind, the velocity
vector and the aircraft reference line are not coincidental. Also, since
it {s not always necessary to keep the eyes directed along the velocity
vector, the searching pilot can greatly reduce the angular rates simply
by tracking the target with head and eye movements. The same results
could be obtained with a properly designed search or bombing system.

18
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OPTICAL ASPECTS OF AIR-TO-GROUND SEARCH

Detection involves light entering and passing through the atmosphere,
reflecting off the target and its surroundings, and again passing through
the atmosphere to be received by the eye or a sensor. The amount, spectrum,
and direction of the emitted light, the optical properties of the atmosphere,
and the reflectance of the target and its surroundings affect target detec-
tion probability and target detection ranges.

CLOUDS

Clouds have two general effects upon target visibility: obstruction
of the target, and diffusion of the light coming from the sun, thus affec-
ting the way the target is illuminated. In some operation analyses, an
estimate of the amount of cloud cover is useful. Such data can be found
in Ref. 6 through 9. These references give average monthly values of cloud
cover and are averaged into seasonal values in Ref. 10. Similar information
can be obtained from Ref. 11, 12, and 13.

Illumination, in foot-cancdles, falling on a fully exposed horizontal
plane at any point on the earth at any hour of the day or night, can be
found from the charts presented in Ref. l4. In this reference it is stated
that when the sun is obstructed by thin clouds, the value of illumination
should be divided by two: for average cloud conditions obstructing the sun's
rays, the values given for clear days should be divided by three; and for
dark stratus clouds, the values should be divided by ten.

In some mathematical e»pressions for visibility parameters, the bright-
ness of the sky or the ratin of the brightness of the sky to the brightness
of the target background appears. Such data can be found in Table 5.2 of
Ref. 15, Table 3 of Ref. 1€, and Table C of Ref. 17,

In experiments ccncerning visual resolution, it was found that resolu-
tion will incrrase appreciably as skies approach overcast conditions (Ref. 18).
The cloud cover reduces the effects of '"shimmer'" (see next section).

ATMOSPHERIC ATTENUATION

Light passing thrcugh the atmosphere is subject to absorption and
scattering; this reduction in intensity c¢f a beam, called attenuation or
extinction, has been measured under a variety of conditions. The attenua-
tion coefficient, a, is defined by

1 =1_e ™ (16)

where I and I are the intensities of a collimated beam of light entering
o . . .
and emerging from a layer of air x-units thick. Values for a can be found

19



NAVWEPS REPORT 8617

or calculated from data given in Ref. 15 through 21 and generally range
from 0.05 to 0.5 per kilometer. Such information can be used in calcula-
tions of target-background contrast attenuation for application in visi-
bility models used to compute detection and recognition ranges. Light
scattering of particles in the atmosphere results in a luminance of the
“space" between the observer and the target. This path luminance acts
to reduce target-background contrast and hence make the target more dif-
ficult to find.

The irregular refraction by the atmosphere of the light rays reflec-
tea by an object frequently makes identification of the object difficult.
The index of refraction of the air scmetimes varies rapidly and irregu-
larly from place to place, causing shimmer (Ref. 15, 18, 22 and 23). An
example of the degradation in visual resolution caused by shimmer is
shown in Fig. 21 (taken from Ref. 22). Such degradation can be assumed
for some conditions in recognition range calculations.
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FIG. 21. Degree of Scintillation Versus
Resolution Using Landolt Broken-Ring Chart.

TERRAIN AND TARGET REFLECTANCE

One of the factors that determines whether a target can be detected
is the contrast in brightness and color between the target and its back-
ground. A very broad classification of backgrounds by color is given in
Ref. 24. The role cf color is indicated in Fig. 22, where the eye's
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sensitivity, the intensity of sunlight, and the reflectance factor of a
red surface are shown as functions of wavelength. Reflectance data for
various types of terrain are given in Ref. 25, 26, and 27. Figure 23a,
taken from Ref. 27, shows the reflectance of various types of desert ter-
rain. Figure 23b shows that the sun’'s angle makes a considerable differ-
ence in the reflectance, and hence brightness, of terrain. The data of
Ref. 25 have been converted to a single reflectance factor by using values
weighted according to the relative sensitivity of the human eye to dif-
erent wavelengths. These values are shown in Table 1 as taken from Ref.

28, page 10.

VIOLET BLUE GREEN YELLOW RED

1.00

0.80

o
3

RELATIVE INTENSITY

020

WAVELENGTH, MILLIMICRONS

FIG. 22. Eye Sensitivity, Solar Radia-
tion, and Reflectance of a Red Surface.

The refiectance of typical ground targets has not been found in the
literature. A single value for reflectance does not exist in most cases:
each man, vehicle, or bridge has a number of different reflectances. Some
examples of average contrast of a target against a background are available
however. (Contrast is defined in the next section.) From measurements on
models reported in Ref. 29 it was found that olive drab troops and vehicles
in California desert have a contrast of about 0.6. Olive drab troops and
vehicles on black pavement, some dirt roads, and green grassy fields, have

a contrast of about 0.3.
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TABLE 1. Reflectance Factors for Various Surfaces

Surface Weighted reflectance factor

Black earth
Earth roads
Paved roads
Buildings
Forest (winter)
Forest (autumn)
Forest (summer)
Grass fields
Dry meadows
Lush gracs
Fresh snow
Open sea
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PSYCHOPHYSICS OF AIR-TO-GROUND SEARCH

The final step in the visual detection process is the reception of
light rays from the environment by the observer, and the selection and
interpretation of enough pertinent information to permit target detection.
The physiological and psychological characteristics of the human visual
system are therefore important factors in the estimation of detection
ranges and probabilities of detection. Several experiments that have
been made in the laboratory and are described briefly below furnish data
on visual capabilities.

THRESHOLD CONTRASTS

The brightness of a target and its background can be calculated from
illumination and reflectance information or can be measured directly. The
contrast of the target is defined as

C = ~——— (17)

where By is the brightness of the target and By is the brightness of the
background. For targets darker than their backgrounds the contrast is
negative, but since it has been shown that targets are equally visible if
their contrasts are numerically equal, the sign need not be regarded as
so important. It must be noted that contrast due to color differences is
not included in Eq. 17. Color contrast is more difficult to access ana-
lytically, and the absence of large color differences in military situa-
tions (tanks are seldom painted blue) has led to little investigation of
this factor.

In experiments conducted during World War II, threshold (or liminal)
contrasts of human observers were determined for various target sizes and
adaptation brightness. Liminal contrast is simply defined as that value
at which detection occurs 50% of the time. A spot of light was projected
onto a white screen located 60 feet from the observer who indicated where
the spot appeared. A large amount of data were analyzed and plotted as
shown in Fig. 24 that was taken from Ref. 30.

A later experiment by Blackwell and Moldauer (Ref. 31) determined
the threshold for various positions of the target on the retina. Targets
subtending 1 minute of arc to the observer and presented for 0.0l second
were used.

The data of Blackwell reported in Ref. 30 have been extended by
Taylor in Ref. 32 and 33. Experiments similar to those described in Ref.
31, but thought more useful in visual search calculations, are reported
in Ref. 32. The targets were exposed for 0.33 second instead of the 0.01
second in Blackwell's experiment.
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Visual contrast thresholds were determined in Ref. 35 in a manner

differing from Blackwell's and Taylor's:

Landolt rings were used as tar-

gets (Fig. 25). The thresholds were consistently larger than those found

by Blackwell.

LOG LIMINAL CONTRAST
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Liminal Contrasts for Round Targets Brighter

The target was presented in

only one position for a sufficient time to attain maxi-

mum frequency of correct response.
are for 50% correct identification

ing Proportions.

The liminal contrasts
(above chance).

Contrast thresholds were measured for rectangles with length-width
ratios of 2 to 200 in a study described in Ref. 36.
than 100 square minutes, square targets had lower thresholds than rec-
tangular ones: the greater the ratio of length to width, the higher the
The data are further analyzed in Ref. 37 from which

threshold (Fig. 26).
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Fig. 27 was obtained. It is seen that for 100% detection the contrast
must be about two times the threshold contrast. The detection proba-
bility may be even lower than that shown in Fig. 27. According to Ref.
16, page 94, "the probability of an observer voluntarily reporting the
presence of a liminally visible,target is nearly zsro". Threshold con-
trasts have also been found for other forms. Crosses, for example, were
used in an experiment described in Ref. 38.
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FIG. 26. Threshold Contrasts for Rec-
tangles of Various Dimensions. A 3-sec-
ond monocular exposure was used with a
brightness of 2,950 foot-lamberts.

In the above studies, backgrounds of uniform luminance were used.
In a study reported by Bixel and Blackwell (Ref. 39), threshold contrasts
were found for circular targets as viewed against a background made up of
ball bearings painted gray. A '"regular pattern of luminance nonuniformity"
was produced. It was found that when the contrast of the target was ex-
pressed with respect to the brightness of the immediately adjacent area
and not with respect to the average brightness of the whole background, the
results were the same as those obtained with the uniform background. "This
implies that visibility thresholds are determined by target contrast at
target borders rather than by some kind of average contrast.'
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STATIC SEARCH

The experirments described above included very little, if any search-
ing for targets, and it was not necessary to discriminate target from non-
target objecte. In searching for ground targets from aircraft, however,
it is often necessary to search over a fairly large area, and to make
judgments on a number of objects. A number of laboratory experiments have
been carried out requiring this kind of search.

In the study of Boynton and Bush, observers were asked to search for
a specified target located among 2 number of irrelevant forms (Ref. u0).
The target and objects were located on a circular, back-illuminated glass
plate as shown in Fig. 28. Typical results are shown in Fig. 29, taken
from Ref. 4l and 42. Performance decreases as search time decreases, and
as the number of objects in the display increases.

Ir the study described in Ref. 43, observers were asked to se2crch a
circular field for a target (see Fig. 30) located among a numl er ¢f similar
objects. Search time increased with search area size (see Fig. 31). Since
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FIG. 28. Example of Field to bLe Searched,
From Experiments of Boynton and Bush (Ref. 40).
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FIG. 29. Search Performance, From Experi-
ments of Boynton and Bush. Object density
is shown on each curve.
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FIG. 30. Targets Used in Experiments by
Baker, Morris, and Steedman (Ref. 43). The
figure above is not representative of the
displays used, but only of the objects in
the displays.

the number of forms on a search area was rougly proportional to the search
area size, it was felt that the primary factor in the increase in search
time was the increase in the number of irrelevant forms.

In one experiment a square white field was partitioned into equal
sections by black lines (Ref. 44). This field contained squares, diamonds,
and triangles, the latter being the targets. Search time increased as the
number of nontarget objects and partitions of the {ield increased. The re-
sults are shown in Fig. 32.

A circular display containing many small dots (circular pseudotargets)
and one designated target (a square, triangle, hexagon, or pentagon) was
used in a search experiment by Smith (Ref. u4S5). Typical results (for the
square target) are shown in Fig. 33. It was also found that tre triangle
was the easiest target to find, and then in increasingly diffi ult order, a
square, a pentagon, and a hexagon. In further experiments, peripheral
discriminability of the targets was measured and compared to search time
for that target (Ref. 46 and Fig. 34). It is seen that the easier it is to
discriminate the target peripherally, the quicker it can be found in a dis-
play containing other objects.
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FIg. 31.

Search Time Versus

Search Area for Experiment by
Baker, Morris, and Steedman.
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In three experiments described fully in Ref. 47, a peripheral visual
acuity score was obtained for 16 subjects using a Landolt ring as the tar-
get. The time it took these subjects to find a target in a display con-
taining other objects was also measured. Those subjects with the higher
peripheral acuity (PA) scores tended to find the target quicker than those
whose PA scores were lower, as was suggested by tests conducted by Smith,
Boynton et al. Two types of displays were used: one contained '"blobs"
and the other rings. Search time was longer and less affected by object
density for the blob displays than for the rings. The search task was
repeated using only ring displays as part of the second experiment, and
the average search times were much the same as those measured in the first.
The third experiment employed a linear cue in ring displays by adding a
black line to the display. The target was located somewhere along this
black line. Search time decreased greatly and was not as affected by ob-
ject density as it was in the displays without the cue. These search times
are shown in Fig. 35.

Other studies of static search are included in Ref, 48 where such
parameters as blur, eye movements, vigilance, and strategy are discussed.
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FIG. 34, Search Time Versus Peripheral Discriminability, From
Smith (Ref. u6). Peripheral location in the figure is the dis-
tance from the point of fixation at which the target could be
discriminated from a pseudotarget 75% of the time (50% corrected

for chance).

MOTION AND VISUAL ACUITY

Ludvigh and Miller were the first to do considerabl: work with mov-
ing targets. A series of reports issued by the U. S. laval School of
Aviation Medicine, U. S. Naval Air Station, Pensacola, Florida, describe
these studies. Some of the studies are alsc discussed in Ref. 49 and SO.
Figure 36 shows that monocular visual acuity as measured with a Landolt
ring deteriorates as the velocity of the target increases.

A good discussion of the work of others in the field and a presenta-
tion of the results of an experiment conducted at Tufts University is
given in Ref. 51. Landolt rings were used as in the Ludvigh and Miller
studies to determine dynamic visual acuity. Although acuity deteriorated
with increasing velocity, it was found that lengthening the tracking time
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or target exposure time, or both, slowed this deterioration. These con-
ditions resulted in better acuity scores than in the Ludvigh and Miller
studies.

In a study by Burg and Hulbert (Ref. 52), the target used was the
checkarboard pattern of the Bausch and Lomb Ortho-Rater. The average
dynamic acuity score was much better than that reported by Ludvigh and
Miller. A different test object and binocular tracking over a longer
distance may account for some of this difference.

In a similar study (Ref. 53), a Landolt ring projected upon a screen
by a rotating projector was the moving target. The results were much the
same as those reported above.

Display scale studies performed by Boeing Airplane Company (Ref. 54)
indicated that an optimum display scale and an optimum viewing time ex-
isted for best target recognition. The curve is shown in Fig. 37.
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The legibility of moving letters and numbers was measured and results of
the studies are reported in Ref. 55 and 56. Legibility thresholds are
shown in Fig. 38. The symbols were moving in a column from top to bottom.
In a later experiment, the relative legibility of the same letters was de-
termined for velocities of 22.5, 31.°, and 36.0 deg/sec past the observer's
eyes. Legibility rankings at all velocities were found to be significantly
correlated with each other at the 0.001 level. No significant correlation
was found with the rankings and the frequency of occurrence of letters in
the English language.
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FIG. 38. Legibility Curves for Letters
Subtending About 39 Minutes to the Observer.

After a review of research published in Ref. 57, it was concluded
that targets moving across the visual field can be equated to stationary
targets flashed on for a single brief exposure, equal in duration to the
time required for the target to move across a point on the retina.
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MOTION AND SEARCH

Visual target detection from an aircraft was simulated by making ob-
servations from moving automobiles in experiments reported in Ref. 29,
Toy soldiers and vehicles were used as targets, and the geometry was equi-
valent to that encountered at a flight altitude of 100 feet. Reconnais-
sance scores were not appreciably affected by the speed of the automobile
when the course was run at simulated speeds of 1,200 mpn or less. The
amount of actual searching in these tests is not knnwn.

An experiment was performed at the Minneapolis-Honeywell Company us-
ing moving typewritten capital letters (Ref. 58). The same letters were
always present in the field, which moved but did not change. Search per-
formance began to decrease at display speeds between 3 and 16 deg/sec.
The probability of locating the target, which was always within view some-

where in the field, is shown in Fig. 39. Again, it is seen that the higher

the speed, the lower the probability of detection.

0.80
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FIG. 39. Cumulative Probability for Each
Speed for High-Density Field, From Williams
and Borow (Ref. 58).

Some of the variables involved in detection of moving targets were
studied in the experiment described in Ref. 47. The task was to detect
the target, a Landolt C, among a number of solid rings. The rings were
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glued to a long white opaque belt that was moved vertically past a square
window. Search performance generally deteriorated with an increase in

belt velocity, ring density, or both. The probability of locating a tar-
get was strongly dependent upon its position in the display: the closer

it was to the vertical centerline of the display, the more often it was
detected. It was tentatively concluded that motion per se had no detri-
mental effect upon searching fields that were moving up to 10 deg/sec.

The percentages of targets found in "equivalent search time" in moving

and static displays were very much the same. This suggests the possibility
of an extension of the statement in the previous section taken from Ref. 57
concerning apparsnt equivalency of detecting moving and static targets.

For the velocities investigated, probability of detection appears to be the
same when search also is involved. Foveal acuity seemed to be 2 better
prediction of search performance than did peripheral acuity at the higher
field velocities. The probability of finding the targets is shown in Fig.
40.
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SIMULATOR STUDIES

It appears that most laboratory studies yield data that are useful
in answering academic questions rather than the operational questions
encountered by the military. When no other information is available,
such data are used in operational analyses; but if time, space, and the
budget permit, it is preterable to gather data in a situation approxi-
mating the one of interest. Although the boundary between "academic'
laboratory experiments and simulations is arbitrary, the author considers
the studies described above to be irore of an academic nature than opera-
tional, with the exception of the work reported in Ref. 29 where toy
soldiers and vehicles were used as targets.

The study reported in Ref. {3 closely simulates a photo interpreter’'s
task and might be considered to simulate, to a lesser degree, search from
a high-flying aircraft, say 10,000 feet. In this study there were marked
nonuniformities of display coverage by the observer. It was also found
that the time needed to locate critical objects was markedly increased by
degradation of the display resolution. A number of other findings were
made regarding eye movements during search and are reported in more detail
"in the sources listed in Ref. 59,

Studies carried out on contract at Hughes Aircraft Company closely
simulated photo interpreting tasks in which performance was measured as a
function of display resolution (Ref. 60). It was concluded that since en-
larging the scale has a detrimental effect at poor resolutions and a bene-
ficial effect at better resolutions, the most effective means of improving
the operator's performance is to increase display resolution. In an ex-
periment conducted by the same group (Ref. 61), strip maps were moved past
a window through which an observer was to search and identify spc:ified
targets. A fairly low percentage of targets were recognized at both dis-
play velocities used.

In an exploratory study reported in Ref. 62, it was shown that there
was no significant difference in the performance of photo interpreters
using different (vertical or oblique) or additional (vertical and oblique)
views of the target area.

Reference 63 describes a simulator study using a rural landscape
model built to a scale of 1:108. Small model tanks, other vehicles, and
foot soldiers were used as targets. The experiments were run at two illu-
mination levels: 0.02-foot candle (that of a three-quarter mmon), and
2.0-foot candles (morta:r flare). The influence of the light source posi-
tion upon visibility was determined, an?! the simulated ranges of detection
and identification were obtained for the various targets. It was concluded
that a single flare may be more effective than a combination of flares
since multiple flares in certain locations will attenuate contrast, thus

reducing visibility.
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A terrain model 10 feet on a side and built to a scale of 1:600 was
used in the study reported in Ref. 64. An actual site within a park con-
taining trees, grass, planted fields, buildings, and a number of roads
was copied in the model. The target used was a convoy of three vehicles
parked along a road. Data collected on this simulator were compared to
data collected over the actual park using actual vehicles as targets and
nine Navy pilots in RC-u45J aircraft (at 130-knots airspeed) as observers.
The probability of detecting the target Loth in the simulator and in the
field is shown in Fig. 41, It is seen that there is a large difference
between the laboratory data and the data collected in the field. However,
the internal relations of sim:lator and field data were enough alike so
that data for the former could be used to extend the usefulness of data
gathered in the field.
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FIG. 41. Probability of Detection, From Ref. 63.

PERATIONAL STUDTES

If there is a need for data describing human capabtilities in air-to-
Zround search, the most reliable approach is ‘o arrange for a nurber of
humans to fly around in airplanes and collect dita on their search capa-
bilities. All variables would be preseat, such <t time and attention
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necessary for actually flying the airplanes, vibration of the aircraft,
air turbulence, and optical distortions by the windscreen and atmosphere.
In spite of the difficult: and expense in such an undertaking, a number
of =such studies have been made. The study reported in Ref. 64 described
in the last section 1is an example. Those data can be uced for estimat-
ing the detection rarnge of a three-vehicle convoy painted ocattleship gray
and parked along a road. Other ccnditions, such as the 1%0-knot speed

of the aircraft, must also be kept in mind.

A series of studies known as Project Longarm were conducted by George
Washington University, under contract to the Army, and are summarized in
Ref. 65. Targets such as riflemen, mortars, rocket launchers, jeeps,
tanke, bunkers, and trucks were used in the tests. Forty-two observers
were flown, one at a time, over the target area in an 0-YA aircraft at
about 92 mph and 350 feet above the ground. Targets smaller than 5 square
milliradians were undetected by most observers; whereas targets subtending
more than 50 square milliradians were detected if they were exposed for
S seconds or more, were relatively unconcealed and were viewed under good
visibility condirions. Targets were detec*ed more frejuently when they
were moving than when staticnary. It {s further stated in Part I of Ref.
65: ‘'Results from Frojec: ‘- :garm clearly indicate that, at low altitudes
only (500-1,000 feet), ac: : observer performance was lower at high
speeds (275 knot:;) than for low speeds (87 knots)." This difference in
performance almcst disarpeared at altitudes above 2,500 feet.

Ir. 3 study reported in Ref, 66, it was found that the method of scarch-
ing as well as the velocity of the aircraft carrying the observer affected
search performince. Twentu-four obcervers searched for targets ranging
in size from a2 tank to an automatic rifle. The observers were flown past
the targets in an 0-1A aircraft and an OH-23 helicopter at 200 fee: above
the ground. Tour different methods of search were used. The results,
shown in Fig. 42, were typical: performance decreases with increasing ve-
jocity, and some search methods are better than others.

Tests of target recognition capabilities from helicopters flying at
or below tree-top level (contour flight) at 60 mph are described in Ref.
67. Tanks, jeeps, self-propeiled guns (Scorpion) , and mortar emplacements
put in the field (variable terrain) in strategic defensive locations were
amon,g the targets used. Thirty-two pilots with aerial observation train-
ing or experience acted as observers in the tests, which were run from
7:00 a.m. to 5:00 p.m. Part of the results taken from Ref. 67 are shown
$n Table 2 and Fig. 43. The probability of detecting the targets is quite
low, and the detection ranges are considerably shorter than many theoreti-
cal analyses have predicted.

A survey of the literature summarized in Ref. 8 revealed that con-
ditions of field tests that have been carried sut arz so varied that com-
bining the data to obtain a single estimate of search capabilities {s
risky. Nevertheless, in the absence of other estimates, this was done.
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The resuits, which combine data collected from a number of altitudes,
velocities, aircraft, targats, and terreins, are summarized in Fig. uu
and 45, The width of the curves reflects the confidence one might have

in them.

Additional operational data that were not available for the summary
given in Ref. 68, can be found in Ref. 69 and 70.
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FIG. 43. Probability of Detecting Ground
Targets From Contour-Flying Helicopters.

Enough such data do exist to provide a basis for some operational
analysis estimates. 't often seems, however, that for specific problems
data do not exist, and tests must be run or prelimiiary estimates made
from the results of using laboratory data in mathemati!cal models.
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TABLE 2. Probabilities and Ranges of Target Types
Recoilless | Support Machine
Item Tank rifle platoon | Scorpion| gun
Probability of detection 0.38 0.15 0.13 0.12 0.06
at or before 0-50 yard
minimum range
Probability of correct 0.35 0.12 0.12 0.06 0.05
identification
Maximum range of detec- 1,400 950 700 1,350 620
tion, yard
Range at which greatest 300 SO 300 100 100
frequency of detections
occurred, yard
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FIG. 44, Target Acquisition Ranges in Visual

Air-to-Ground Search.
range of variables, arrows show the range of
data collected at a particular point on each

curve.

As an example of the

ul



NAVWEPS REPORT 8617

PERCENT TARGETS RECOGNIZED
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FIG. 45. Percent of Targets Recognized in
Visual Air-to-Ground Search. Arrows show
the range of data collected at a particular
point on each curve.

MATHEMATICAL MODELS

Almost all of the material presented thus far in this report has
dealt with direct measurements: cloud cover, atmospheric attenuation,
terrain reflectance, and visual capabilities. If operational data sim-
ilar to that discussed above are available, knowledge of such individual
variables is unnecessary. When there are no applicable operational data,
howsver, preliminary estimates are often made by calculating detection
ranges according to curtain assumptions regarding the search process.
For example, consider the simulator and field studies already described
in Ref. 64. Since the internal similarities of both were the same, a
transformation factor was used to extend the range of the field-test re-
sults. This factor was determined between corresponding simulator and
field data and then applied to values obtained on the simulator under
conditions that had not been duplicated in the field. This operation,
which appears to be direct and reliable, yields curves similar to those

shown in Fig. u6.
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Figure 47 shows the results of a process a step further from reality,
where relative search performance was calculated from tne results of lab-
oratory experiments described in Ref. 40, 41, and 42 (see Static Search
section). It was assumed that trends in search performance in a display
similar to that shown in Fig. 27 are the same as trends encountered in
the field. An optimum altitude of search for a given aircraft velocity
and relative search performance at that altitude and velocity can be de-
rived from the figure. It is suggested in Ref. 42 that the range of
field data could be extended by using this model, as was done in the
field and simulator studies described above.

The personnel at Scripps Visibility Laboratory also use the rssults
of experiments performed specifically to gather data for a mathematical
model. Detection and recognition ranges of targets are calculzated from
inputs such as atmospheric attenuation data, target-background contrasts
measured with either a small model or the actual target, sun’s angle,
visual thresholds measured in the laboratory, and others. An example
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of such a study is given in Ref. 71, where the detection and recognition
ranges of a tank and a radar van are calculated. These ranges will be
compared to data gathered in the field in a program being carried on at
NOTS to evaluate the Scripps visibility model. The summary report will
be issued by NOTS late in 1965.

The comparison cf field test rssults to simulator results dsscribed
in Ref. 63 is the cnly such check on direct visual performance discovered
in the literature. Similarly, the NOTS-Scripps studies will produce the
only known check on a mathematical model.

A number of studies using data available in the literature have been
conducted, examples of which are Ref. 72 and 73. In Ref. 72, the detec-
tion probability of a tank seen end-on has been computed using specified
meteorological visibility, sky-ground brightness ratio, duration of fixa-
tion time per glimpse, target-background contrast, and aircraft velocity.
In addition, a confusion factor (CF) is introduced into the calculations
to account for search when other objects are in the visual field. It is
not clear how a value is selected for the factor, however, Curves similar
to those shown in Fig. 48 are given in the report. Apparently, the model
has not been verified by even the simplest experiment.
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01| veirrKTs AN FIG. 48. Accumulative Detection
= e 3 000 FT ALT. \\\\\\ Probability Against a JS-III Tank
e T°° "1“"- . S~qoSs._ | in an Area 600 by 500 Yards. The
O+ 2 3 4 8 & 7 ’}‘-i assumed confusion factor, CF, is

HORIZONTAL RANGE TO TARGET, THOUSANDS OF FT. shown on the curves.

A more complicated model described in Ref. 73 can be applied to rec-
ognition of targets by direct vision or with television, infrared, or
radar sensors. The complexity is indicated by the use of some 198 symbols
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in this model, including a probability of target recognition by an ob-
server while monitoring some particular sensor display during a particular
interval. The formulation of this probability is based upon the work of
Boynton et al reported in Ref. 42, The model is programed so that it can
be solved on the IBM 7090.

A number of additional reports dealing with visual detection, issued
by contractors or government agencies, are listed in the bibliography.
Although such reports, including those described above, vary in their con-
tent and probable accuracy, they all have one thing in common: their con-
clusions or results have not been checked in the field. Furthermore, in
some cases the assumptions made are questionable. Choice of experimental
data upon which to base model formulation is but one of the problems. As
an example, consider some calculations of search efficiency from a moving
aircraft that were based upon Ludvigh and Miller's dynamic acuity data.
If, instead of Ludvigh and Miller's data, the data from the experiments
by Elkin or Berg and ilulbert had been used, the estimated search perform-
ance would have been much better.

SUMMARY: SOLUTIONS TO OPERATIONAL PROBLEMS

The necessity of estimating human visual capabilities occurs fre-
quently in weapon feasibility and design studies and in weapon and tactics
effectiveness studies. Other programs such as flare development and test
also require a knowledge of visual capabilities. In some cases, considera-
tion of geometric or kinematic parameters will suffice. As an example,
consider the evaluation of a tactic of delivering a weapon on the first
pass over a smal: target from an altitude of 200 feet above the ground.
Reference tc Fig. S, 6, and 7 will reveal that the probability of the
target's being within view is low until the aircraft is quite close to
the target. ({mnless the flight path is directly over the target, there
would probably not be sufficient time to change direction and track the
target before weapon release. Hence, it can be estimated without knowl-
edge of human visual capabilities, that the tactic has too high a proba-
bility of failure.

Similarly, the frequency and height of cloud cover in typical target
areas may preclude the use of certain tactics or systems. If such is the
case, to go a step further and assess visual capabilities is unnecessary.
ACQUISITION, DETECTION, RECOGNITION

Most of the time, however, it is not so easy to solve the problem,

and a knowledge of visual capabilities is required. The first step is
to decide precisely what is needed.
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Too often terms are used without being even superficially defined,
leading to ambiguous results, partic.iarly when the human system (with
its associated subjectivity) is being discussed. The process of deliver-
ing a weapon includes searching for the target, detecting an object that
could be the target, inspecting the object, and deciding whether it is
the target. If the object is accepted as a target, recognition is said
to have occurred. The next step is to enter the delivery mode and track
or lock on the target. Target acquisition might be defined as the entire
process of search, detection, inspection, and target recognition. In some
applications, the term target acquisition includes the ability to locate
the target (on maps, with respect to some terrain features, with respect
to the aircraft, etc.). In other applications, target acquisition is de-
fined to include the lock-on phase.

However, precise definition of these words in this report is not
appropriate since no particular situation is being discussed, and one de-
finition is not applicable to all existing data. Current concepts include
a probabilistic approach which is perhaps most applicable to the opera-
tional situation. The most accurate interpretation of data is based upon
such an approach. If a tank has been reported in a certain area, and the
searching pilot detects a large dark object in the area, he may be willing
to enter the attack mode. If tanks have been shooting at airplanes, ‘he
pllot might be willing to fire at maximum range, before he can actirally
see enough detail in the object to state at some level of confidence that
it is a tank. If the enemy has been using decoys, missile launching may
be delayed until recognition at a higher confidence level (say 50%) is
reached. If friendly forces are in the area, firing may bc delayed until
the pilot is close enough to say with 100% confidence that the object is
an enemy tank. Since the same process occurs in any field test, motiva-
tional factors must be considered. Motivational missmatch between field
tests and combat is probably inevitable, but efforts should be made to
minimize it.

USEFULNESE OF DATA

Where a large number of data points are available, and are normally
distributed, reporting the mean and standard deviotion is sufficient. In
practice, especially with field tests, the number of samples is usually
small and normality cannot be assured. It is therefore most helpful to
report all the data or to show the distribution of the data (histogram).
Tasts for significance of effects should be included when applicable, but
it is also important to present the data itself. To show that some per-
formance at 100 knots is significantly better (at, say, the 0.001 level
of significance) than at 200 knots is not enough for a decision. If per-
formance (say, range at target detection) is improved only 10% by slowing
down to 100 knots, it may not be worth the disadvantages incurred, where-
as a 300% improvement would be.
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MATHEMATICAL MODELS

It appears that the initial reaction to awareness of the need for
data on target acquisition capabilities is to derive some equations and
calculate all of the necessary data. Factors such as human visual acuity
and contrast threshold, lighting, atmospheric attenuaticn, target size,
and target background reflectances, are usually included even by the be-
ginner. As the theorist studies the problem further, he includes stimu-
lus duration, peripheral acuity (detection lobes), and target shape. The
finishing touches are added by thrcwing in internal visual content (con-
trasts) of the target, nonuniform background, and search techniques with
a dash of probability theory. Often a "fudge factor" is applied to ccver
fatigue, motivational, and other effects. If intermediate sensors are
used, applicable parameters such as signal-to-noise ratio, lines per :nch,
and contrast attenuation, are added to the equations. With some notable
exceptions, the results of these calculations are never checked in th:
field.

Independent comparison of the results with existing field data 'how-
ever meager) shows that zrrors of 100% are common. Errors of more than
100% are even more common. (It might be noted that many of these eirors
are in the favor of whatever missile system is being proposed at the time.)

Efforts to apply analytic methods to the target visibility problem
should continue, and support should be given to those proficient in the
field, such as Scripps Visibility Laboratory. Such efforts should Le re-
cognized as being in an exploratory research phase, however, and should
be treated as such. Basing missile design on the results of such cilcu-
lations can easily result in the waste of more money and time than would
be consumed by a properly planned flight-test program that would proavide
more reliable data.

LABORATORY TESTS (SIMULATORS)

Field conditions can be simulatcd to varying degrees of fidelity in
the laboratory and pertformance f subjects can be measured. Simulation
of the target acquisition process can range from use of abstract, two-
dimensional displays (containing circles, squares, numbers, letters, etc.),
to complete three-dimensional terrain models containing trees, roads, grasc,
houses, and an adjustable "sun". There are a number of such simulators in
this country and many reports have been issued giving results obtained with
them. These results are almost never checked, even partially, in the field.

Simulator studies are valuable for determining trends to be expected
in the field, provide a valuable background and partial understanding of
the problem of planning field tests, and can be used to extend field data
under the proper conditions. But using simulator data as the only input
to analyses of operational problems (which usually require absolute, not
relative numbers) is unwise when there {s any feasible alternative.
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FIELD TESTS

A tield test is, in most cases, also a simul:ction of a desired com-
bat situation.

Although it is not often done, the physical situation can bte dupli-
cated (az on the Coso Test Range, at NOTS) so that one might say this is
not a simulation. Difterences in mctivation and stress, for example, do
exist, and probably make the re- .ts noticeably different from those
which would be obtained in war.

In mathematical models, relations.iips and values of parameters can
simply be assumed, and calculations made. In laboratory studies, factors
can be closely controlled and a large amount of data can be gathered. In
the fiela tests, however, adequate contr.l of the variables is often dif-
ficult or impossible, and the number of conditions that can be investi-
gated as well as the number of runs at each condition is limited by prac-
tical factors. These factors must be kept in mind when planning field
tests as well as when judging the usefulness or applicability of field-
test results to¢ weapon analyses.

Although the only real solution to an operational problem is a field
test, the material presented in this report is helpful in planning, con-
ducting, and evaluating field tests, and might be used to some degree to
extend the test results.

The information presented in this report ca: be placed in two cate-
gories: (1) factors affecting air-to-ground dete:tion and recognition
ranges and probabilities and (2) past attempts to determine these ranges
and probabilities. The first category is simply a presentation of ex-
amples of available data from analyses, field measu.ements, and labora-
tory studies. The second describes studies of collaction and interpre-
tation of test data for various applications and, in some cases, the use
of data from the first category for estimating performance levels in
operational situations. The second category, which produces results with
direct application to military problems, is by nature more controversial.

It is hoped that the results of the operational studies described or
referenced in this report will be useful in answering dasign evaluation,
or tactical questions. The curves showing obstruction »f view and angu-
lar rates of the field can be used alone or in combination with the re-
ported field-test results in various types of operation:l analyses.
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